Man RPE cells with CSE also increased the secretion of fibronectin and laminin into the culture media. Laminin is a basement membrane protein, which is involved in the formation of basal laminar deposits of the ageing macula [24]. Both laminin and fibronectin have been shown to be secreted by senescent human RPE cells [23]. In the pathogenesis of AMD, it is assumed that cellular senescence and dysfunction of the RPE lead to an increased aggregation of ECM [15,54]. Therefore, CSE-induced levels of CTGF and fibronectinrepresent senescence-associated changes and demonstrate increased ECM synthesis in cultured 1531364 human RPE cells. A similar effect could also be observed after treatment of RPE cells with hypoxia/reoxygenation [55]. Furthermore, exposure to cigarette smoke could increase the formation of sub-RPE ECM deposits in an experimental mouse model [56,57]. An induction of CTGF levels was previously observed during cutaneous wound healing in smoke-exposed mice [58]. Whether or not CSE is responsible for the ECM accumulation in the RPE of AMD patients awaits further investigations. Based on these results, we conclude that cigarette smoke may be responsible for the cell loss, senescent changes, and synthesis of ECM components in primary cultured human RPE cells. Therefore, cigarette smoke may induce cellular events, which may resemble pathogenic changes in AMD. Hence, these results may provide one explanation for the adverse effects of cigarette smoke on 1527786 the pathogenesis and progression of AMD.AcknowledgmentsThe authors thank Katja Obholzer and Jerome Moriniere for excellent technical assistance.Author ContributionsConceived and designed the experiments: ALY KB JB UWL. Performed the experiments: ALY KB JB UWL. Analyzed the data: ALY KB UWL. Contributed reagents/materials/analysis tools: ALY UWL. Wrote the paper: ALY UWL. Obtained permission for the use of cell line: ALY UWL.
Liver diseases and injuries are important medical problem worldwide. Liver transplantation is currently the most efficient therapy for liver failure and end-stage liver disease. However, it is limited by the scarcity of donor, expensive medical cost, surgical risk and requiring life-long immunosuppressant LED 209 agents. The development and application of hepatocytes transplantation has been attempted to treat different forms of liver diseases [1,2,3]. It has minimal invasive procedures and fewer surgical complications compared to the orthotopic liver transplantation. Stem cell transplantation has also gained considerable attention recently. Stem cells have the potential to supportive tissue regeneration andto generate large amounts of donor cells ready for transplantation [4,5,6,7]. The induced pluripotent stem cells (iPS) are generated from differentiated cells by genetic MedChemExpress KDM5A-IN-1 reprogramming technique [8]. They possess the abilities to self-renew and differentiate into different cell types after proper induction [8,9,10]. The major advantage of iPS is that they can be generated from somatic cells. The use of autologous iPS avoids immune rejection after transplantation and the ethical concerns raised by using embryonic stem cells. In recent years, the potential roles of iPS or the hepatocytes that differentiated from iPS in the management of liver injury have recently gained increasing attention [7,11,12].IP-10 in Liver Injury Post iPS TransplantationAlthough previous studies using stem cells in treating liver injuries have shown beneficial effects [13,14,15], the underlying mechanism.Man RPE cells with CSE also increased the secretion of fibronectin and laminin into the culture media. Laminin is a basement membrane protein, which is involved in the formation of basal laminar deposits of the ageing macula [24]. Both laminin and fibronectin have been shown to be secreted by senescent human RPE cells [23]. In the pathogenesis of AMD, it is assumed that cellular senescence and dysfunction of the RPE lead to an increased aggregation of ECM [15,54]. Therefore, CSE-induced levels of CTGF and fibronectinrepresent senescence-associated changes and demonstrate increased ECM synthesis in cultured 1531364 human RPE cells. A similar effect could also be observed after treatment of RPE cells with hypoxia/reoxygenation [55]. Furthermore, exposure to cigarette smoke could increase the formation of sub-RPE ECM deposits in an experimental mouse model [56,57]. An induction of CTGF levels was previously observed during cutaneous wound healing in smoke-exposed mice [58]. Whether or not CSE is responsible for the ECM accumulation in the RPE of AMD patients awaits further investigations. Based on these results, we conclude that cigarette smoke may be responsible for the cell loss, senescent changes, and synthesis of ECM components in primary cultured human RPE cells. Therefore, cigarette smoke may induce cellular events, which may resemble pathogenic changes in AMD. Hence, these results may provide one explanation for the adverse effects of cigarette smoke on 1527786 the pathogenesis and progression of AMD.AcknowledgmentsThe authors thank Katja Obholzer and Jerome Moriniere for excellent technical assistance.Author ContributionsConceived and designed the experiments: ALY KB JB UWL. Performed the experiments: ALY KB JB UWL. Analyzed the data: ALY KB UWL. Contributed reagents/materials/analysis tools: ALY UWL. Wrote the paper: ALY UWL. Obtained permission for the use of cell line: ALY UWL.
Liver diseases and injuries are important medical problem worldwide. Liver transplantation is currently the most efficient therapy for liver failure and end-stage liver disease. However, it is limited by the scarcity of donor, expensive medical cost, surgical risk and requiring life-long immunosuppressant agents. The development and application of hepatocytes transplantation has been attempted to treat different forms of liver diseases [1,2,3]. It has minimal invasive procedures and fewer surgical complications compared to the orthotopic liver transplantation. Stem cell transplantation has also gained considerable attention recently. Stem cells have the potential to supportive tissue regeneration andto generate large amounts of donor cells ready for transplantation [4,5,6,7]. The induced pluripotent stem cells (iPS) are generated from differentiated cells by genetic reprogramming technique [8]. They possess the abilities to self-renew and differentiate into different cell types after proper induction [8,9,10]. The major advantage of iPS is that they can be generated from somatic cells. The use of autologous iPS avoids immune rejection after transplantation and the ethical concerns raised by using embryonic stem cells. In recent years, the potential roles of iPS or the hepatocytes that differentiated from iPS in the management of liver injury have recently gained increasing attention [7,11,12].IP-10 in Liver Injury Post iPS TransplantationAlthough previous studies using stem cells in treating liver injuries have shown beneficial effects [13,14,15], the underlying mechanism.